问题描述
已知 n n n 个作业 1 , 2 , . . . , n {1, 2, . . . , n} 1,2,...,n要在由两台机器 M 1 {M_1} M1 和 M 2 {M_2} M2 组成的流水线上完成加工。每个作业加工的顺序都是先在 M 1 {M_1} M1上加工,然后在 M 2 {M_2} M2上加工。 M 1 {M_1} M1和 M 2 {M_2} M2 加工作业 i i i 所需的时间分别为 a i {a_i} ai和 b i , 1 ≤ i ≤ n b_i ,1≤ i ≤ n bi,1≤i≤n。流水作业调度问题要求确定这 n n n个作业的最优加工次序,使得从第一个作业在机器 M 1 {M_1} M1上开始加工,到最后一个作业在机器 M 2 {M_2} M2 上加工完成所需的时间最少。
关于流水作业调度问题的 Johnson 算法
- 令 A B = { i ∣ a i < b i } , B A = { i ∣ a i ≥ b i } {AB = \{ i | a_i < b_i\}, BA = \{ i | a_i ≥ b_i \}} AB={i∣ai<bi},BA={i∣ai≥bi};
- 将 A B AB AB中作业依 a i a_i ai的非减次序排列;将 B A BA BA中作业依 b i b_i bi的非增次序排列;
- A B AB AB中作业接 B A BA BA中作业即构成满足 J o h n s o n Johnson Johnson法则的最优调度。
#include <stdio.h>
#include <algorithm>
using namespace std;
#define N 8
struct assignment{
int a;
int b;
}asg[N] = {{1,2},{2,4},{3,6},{4,1},{5,7},{6,4},{7,9},{8,3}};
bool cmp1(struct assignment x, struct assignment y){
if (x.a >= y.a){
return true;
}
return false;
}
bool cmp2(struct assignment x, struct assignment y){
if (x.b <= y.b){
return true;
}
return false;
}
void johnson(){
struct assignment A[N], B[N];
int a=0,b=0;
for (int i = 0; i < N; ++i)
{
if (asg[i].a < asg[i].b){
A[a++] = asg[i];
}else{
B[b++] = asg[i];
}
}
sort(A,A+N,cmp1);
sort(B,B+N,cmp2);
for (int i = 0; i < a; ++i){
printf("(%d,%d),",A[i].a, A[i].b);
}
for (int i = 0; i < b; ++i){
printf("(%d,%d),",B[i].a, B[i].b);
}
printf("\n");
}
int main(int argc, char const *argv[]){
johnson();
return 0;
}
2017-11-30 北京 怀柔
References:
[1] 陈玉福.计算机算法设计与分析,122-123
[2] https://blog.csdn.net/qingdujun/article/details/78674788